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Abstract A numerical scheme is proposed to solve double-diffusive problems using a
boundary-fitted coordinate system to introduce finer grids in the boundary layer regions and an
accurate high-order difference method. Numerical stability is improved by using fourth-order
accurate upwind-biased differences to approximate the convection terms. The other terms in the
governing differential equations are discretized using fourth-order central difference. To
demonstrate the versatility of the boundary-fitted coordinate system, natural convection in an
eccentric annulus is first simulated. The numerical results are consistent with the experimental
results by Kuehn and Goldstein and better than the numerical results by Projahn et al. for eccentric
cases. Secondly, the symmetry breaking and overturning states in thermohaline-driven flows in a
two-dimensional rectangular cavity are simulated first to validate the numerical scheme. The
numerical results agree well with those by Dijkstra and Molemaker and Quon and Ghil. Finally, the
effect of the Lewis number on the flow system is investigated in detail. Depending on the value of
the Lewis number, the flow pattern is either stable and symmetric, periodic and oscillatory, or
unsymmetric and random.

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/researchregister http://www.emeraldinsight.com/0961-5539.htm

The work reported in this paper is supported by the National Natural Science Foundation of
China (No. 40276011).

Nomenclature
A ¼ area of computational domain
D ¼ cylinder diameter
Em ¼ kinetic energy ¼ 1

A

RR
A

1
2 ðu

2 þ n 2Þ
�

dx dy�
g ¼ gravitational acceleration
H ¼ width of cavity
�keq ¼ average equivalent conductivity

L ¼ difference of radius
½¼ ðDo 2 DiÞ=2�

Le ¼ Lewis number kT/kS

p ¼ nondimensional pressure
Pr ¼ Prandtl number, n/kT

Qs ¼ spatial structure of the surface
salt-flux
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Introduction
Thermosolutal convection has been receiving much attention over the past
three decades because of its occurrence in many transport processes in both
natural and industrial flow systems, such as drying processes, crystal growth
techniques, climatic conditioning of rooms, cooling of nuclear reactors, solar
collectors, atmospheric flows, and ocean circulations.

A number of studies on double-diffusive problems have been carried out. Lee
and Hyun (1990) numerically studied the convection in a rectangular cavity
with counteracting, horizontal temperature and concentration gradients. It was
found that a multi-layered flow structure occurred when the value of the
buoyancy ratio (the ratio of the solutal Rayleigh number to the thermal
Rayleigh number) was moderate. Quon and Ghil (1992) studied the
spontaneous, abrupt changes in thermohaline circulation using a
two-dimensional Boussinesq fluid in a rectangular container. It was found
that the symmetric circulation was replaced by an asymmetric flow when the
specified symmetric salinity surface condition was changed to an equivalent
symmetric salt-flux condition. The extent of asymmetry depends on the
magnitude of the thermal Rayleigh number and the strength of the salinity
flux. The physical mechanism of the bifurcation from symmetric to asymmetric
states was also outlined. Quon and Ghil (1995) subsequently found that, for an
enclosure of very small height-to-length aspect ratio, the system undergoes a
second bifurcation from asymmetric steady states to stable oscillatory
solutions when the salt-flux strength was sufficiently large. From a detailed
study of the bifurcation structure that Dijkstra and Molemaker (1997)
concluded the occurrence of oscillations was quite sensitive to the shape of the
prescribed surface salt flux.

Several numerical methods have been used to study the convection
problems. Heinrich (1984) and Nishimura and Kawamura (1992) used the finite
element method. Lee and Hyun (1991) used a finite difference method to
simulate the experiments of Chen et al. (1971). Nishimura and Kunitsugu (2000)
studied the time-dependent double-diffusive convection in a rectangular

RS ¼ solutal Rayleigh number
RT ¼ thermal Rayleigh number
Rr ¼ buoyancy ratio, RS/RT

S ¼ nondimensional salinity
T ¼ nondimensional temperature
u, v ¼ nondimensional velocity

components
x, y ¼ nondimensional coordinates
1 ¼ distance inner cylinder is moved from

concentric position
k ¼ diffusivity
n ¼ kinematic viscosity
j,h ¼ boundary-fitted coordinates

r ¼ dimensional density
d ¼ strength of the surface salt flux
c ¼ nondimensional stream

function
v ¼ nondimensional vorticity

Subscripts
H ¼ horizontal
i ¼ inner cylinder
o ¼ outer cylinder
S ¼ salt
T ¼ heat
V ¼ vertical

HFF
13,8

1032



enclosure to clarify mechanism of layer merging in a salt-stratified system
using the Chebyshev collocation method. The numerical modelling of
double-diffusive problems is difficult because of the existence of large
velocity, temperature and salinity gradients in the boundary layer, making the
computational cost prohibitive. For high speed flows, an extensive amount of
computational effort is required even for single-diffusive problems which have
been employed as test cases to validate numerical schemes.

The finite-element method, with the flexibility of a variable mesh, is more
versatile than the finite-difference method in handling geometrically complex
domains, but is inferior to the finite-difference method in terms of computer
programming effort and numerical stability. The boundary-fitted coordinate
system (Thompson, 1980; Thompson et al., 1974), which has the advantage of
both the geometric flexibility of the finite-element method and the simplicity of
the finite-difference method, has gained popularity in the solution of fluid flow
problems. Some techniques for automatic mesh generation, which facilitates
the application of the physical boundary conditions, were proposed by Li et al.
(1998). In this paper, a high-order difference scheme is proposed for resolving
the oscillatory flow phenomenon in double-diffusive problems under the
boundary-fitted coordinate system. The proposed scheme is both accurate and
stable. The natural convection in an eccentric annulus and multiple equilibria
in thermohaline-driven flows in a two-dimensional rectangular cavity are
simulated to validate the numerical scheme. Then the effect of the Lewis
number on the thermohaline flow system was investigated in detail.

Governing equations and boundary conditions
We consider natural convection between eccentric cylinders and thermosolutal
convection in a rectangular cavity. At high Rayleigh numbers, the effects of the
boundary layers are significant and hence fine computational grids have been
used. The governing equations are the two-dimensional, time-dependent
Navier-Stokes equations with the Boussinesq assumptions incorporated. The
differential equations, after nondimensionalizing the velocity components u
and v, pressure p, temperature T and salinity S using characteristic scales
L, kT/L, DT, and DS for length, velocity, temperature and salinity, respectively,
are as follows using standard notation.

›u

›x
þ

›v

›y
¼ 0 ð1Þ

›u

›t
þ u

›u

›x
þ v

›u

›y
¼ 2

›p

›x
þ Pr72u ð2Þ

›v

›t
þ u

›v

›x
þ v

›v

›y
¼ 2

›p

›y
þ Pr72v þ PrðRTT 2 RSSÞ ð3Þ
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›T

›t
þ u

›T

›x
þ v

›T

›y
¼ Txx þ Tyy ð4Þ

›S

›t
þ u

›S

›x
þ v

›S

›y
¼

1

Le
ðSxx þ SyyÞ ð5Þ

In order to minimize the number of grid points to reduce computational
cost, the boundary-fitted coordinate system is employed to introduce finer grids
to resolve better flow in the boundary layers. The one-to-one relation
j ¼ jðx; yÞ;h ¼ hðx; yÞ between the physical plane and the transformed
regular plane can be established by solving numerical elliptic equations
(Li et al., 1998; Thompson, 1980; Thompson et al., 1974). Introducing the stream
function

u ¼
›c

›y
; v ¼ 2

›c

›x

and vorticity

v ¼
›v

›x
2

›u

›y

equations (1)-(5) under the boundary-fitted coordinate system become

2
1

J 2
ðacjj 2 2bcjh þ gchh þ sch þ tcjÞ ¼ v ð6Þ

›v

›t
þ

1

J

›c

›h

›v

›j
2

›c

›j

›v

›h

� �
¼

Pr

J 2
ðavjj 2 2bvjh þ gvhh þ svh þ tvjÞ

þ Pr · RT yh
›ðT 2 RrSÞ

›j
2 yj

›ðT 2 RrSÞ

›h

� ��
J

ð7Þ

›T

›t
þ

1

J

›c

›h

›T

›j
2

›c

›j

›T

›h

� �
¼

1

J 2
ðaTjj 2 2bTjh þ gThh þ sTh þ tTjÞ ð8Þ

›S

›t
þ

1

J

›c

›h

›S

›j
2

›c

›j

›S

›h

� �
¼

1

LeJ 2
ðaSjj 2 2bSjh þ gShh þ sSh þ tSjÞ ð9Þ

where a ¼ x2
h þ y2

h; b ¼ xj xh þ yj yh; g ¼ x2
j þ y2

j; J ¼ xj yh 2 yj xh;

s ¼ J 2Q; t ¼ J 2P and P and Q are the coordinate control functions
(Thompson et al., 1974), which may be chosen to concentrate the coordinate
lines in certain parts of the domain where high variations of a given property
were expected.

Boundary conditions are
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c ¼ 0 on all solid boundaries ð10Þ

T ¼ Th on high-temperature wall ð11Þ

T ¼ T l on low-temperature wall ð12Þ

›T

›n
¼ 0 on insulated wall ð13Þ

›S

›n
¼ 0 on impervious wall ð14Þ

If there are heat and salt fluxes through a boundary, such as on ocean surface,
the usual mixed boundary conditions were given by Dijkstra and Molemaker
(1997):

c ¼ v ¼ 0; T ¼ TsðxÞ;
›S

›z
¼ dQsðxÞ ð15Þ

where the function Ts(x) is a prescribed temperature distribution along the
boundary. The parameter d measures the strength of the surface salt-flux and
Qs(x) represents its spatial structure. When the surface integral of this function
is zero, the total salt content is conserved.

For an insulated or impervious boundary, the physical boundary condition
is ›f=›n ¼ 0 ð f ¼ T or SÞ. It will be more convenient to treat the boundary
condition if the transformed coordinate lines intersect, which were arranged
perpendicular to the wall (Li et al., 1998). For such cases, the following
boundary condition on the walls can be used for grid generation,

ð~rw 2 ~rw21Þ · ~tw ¼ 0; ð16Þ

where ~tw is the unit tangential vector on the wall, ~rw is the position vector of a
grid point on the wall and ~rw21 is an adjacent grid point in the same coordinate
line perpendicular to the wall. The insulated or impervious boundary condition
›f=›n ¼ 0 can be simplified to

›f

›j
¼ 0; for h ¼ const

›f

›h
¼ 0; for j ¼ const

ð17Þ

In this paper, all coordinate lines intersecting with the walls were arranged
perpendicular to ease the application of the boundary conditions.
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High-order accurate finite difference method
In this paper, equation (6) is solved using the over-relaxation method.
Convergence is assumed to be achieved when the absolute values of the
difference of c between the successive iteration steps are less than 1028.
Although the time steps Dt used in the test cases given below were very small,
the absolute values of the differences of c between the successive steps at the
early stage of iteration are not very small because the values of the Rayleigh
number used are large, which are in the range of 103-104. A smaller value of
1029 have been used as the critical value for convergence and the results are
the same as those using 1028.

In the spatial discretization, the first- and second-order derivatives in
equations (6)-(9), except for convective terms, were discretized using central
differencing which are fourth-order accurate. The following fourth-order
scheme, where f denotes a dependant variable in the transformed regular
coordinates, is used,

›f

›j
¼

4

3

f iþ1; j;k 2 f i21; j;k

2Dj

� �
2

1

3

f iþ2; j; k 2 f i22; j; k

4Dj

� �
ð18Þ

›2f

›j2
¼

16ð f iþ1; j; k þ f i21; j; kÞ2 30f i; j; k 2 ð f iþ2; j; k þ f i22; j; kÞ

12Dj2
ð19Þ

To avoid numerical instability, the convective terms are approximated using
the fourth-order accurate upwind-biased differences (Rai and Moin, 1991).
For example,

1

J

›c

›h

›v

›j

can be evaluated as

u1
›v

›j

� �
i; j

¼ðu1Þi; j½26ðvÞiþ2; j þ 60ðvÞiþ1; j þ 40ðvÞi; j

2 120ðvÞi21; j þ 30ðvÞi22; j 2 4ðvÞi23; j�=ð120Dj Þ

ð20Þ

if

u1 ¼
1

J

›c

›h
. 0

and
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u1
›v

›j

� �
i; j

¼ðu1Þi; j½4ðvÞiþ3; j 2 30ðvÞiþ2; j þ 120ðvÞiþ1; j

2 40ðvÞi; j 2 60ðvÞi21; j þ 6ðvÞi22; j�=ð120Dj Þ

ð21Þ

if u1 , 0:
In the time discretization, the following second-order accurate

Adams-Bashforth method is used

f nþ1 ¼ f n þ Dt
3

2

›f

›t

� �n

2
1

2

›f

›t

� �n21
" #

ð22Þ

Test case and discussions
The numerical simulations described below were carried out on a Windows 98
PC platform with a 1.6 GHz Intel CPU and 256 MB RAM. Finer grids were
introduced in the boundary layer regions. Because of the complexity of the flow
patterns, finer grids are sometimes required to be arranged in other regions.
Self-adaptive grid generation methods have been used to cope with this
situation. This will be reported in a future paper.

Natural convection between eccentric cylinders
Figure 1 shows the general eccentric configuration of two circular cylinders of
diameters Do and Di with vertical and horizontal eccentricities 1V and 1H, and
with eccentric angle a. The flow in the annular space is laminar with no-slip
conditions. On solid boundaries, equations (2) and (3) can be written as

›p

›x
¼ Pr

›

›y
ð72cÞ ð23Þ

›p

›y
¼ 2Pr

›

›x
ð72cÞ þ PrRTT ð24Þ

The condition for a single value pressure field is (Thompson et al., 1974),

I
l

7p d~r ¼ 0

where l can be any closed curve in the flow field. Therefore, along the outer
cylinder boundary, we have
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2

I
l

›

›y
ð72cÞsinaþ

›

›x
ð72cÞcosa2 RTTcosa

� �
Pr dl

¼ 2Pr

I
l

›

›n
ð72cÞ dl ¼ 0 ð25Þ

where ~n ¼ ðcosa; sinaÞ is the unit vector in the normal direction.
Because we have arranged normal coordinate lines in the vicinity of the

cylinders, equation (25) becomes

I
l

›v

›h
dl ¼ 0 ð26Þ

Using fourth-order difference formula on the outer cylinder ðj ¼ 1Þ, we have

I
l

4v2 2 3v3 þ
4

3
v4 2

1

4
v5 2

25

12
vo

� ��
Dhdl ¼ 0 ð27Þ

in which

Figure 1.
Geometry of annulus
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vo ¼ vouter cylinder ¼ vj¼1 ¼ 2
›2c

›h2

����
j¼1

¼ 2
108c2 2 27c3 þ 4c4 2 85co

18Dh
þ OðDh3Þ ð28Þ

From equations (27) and (28), the value of the stream function on the outer
cylinder can be obtained. The value on the inner cylinder is zero.

For this study, temperature boundary conditions are written as follows:
. To ¼ 0 on wall of outer cylinder
. Ti ¼ 1 on wall of inner cylinder

The simulation of natural convection in a concentric annulus was selected to
verify our method (Figure 2(a)). The computed values of average equivalent
conductivities were used to compare the present results with the available data
in the work of Kuehn and Goldstein (1978) and Shu and Wu (2002). The average
equivalent conductivities are defined as

�keqi ¼ 2
lnðrrÞ

2p ðrr 2 1Þ

Z 2p

0

›T

›r
du ð29Þ

for the inner cylinder, and

�keqo ¼ 2
rrlnðrrÞ

2p ðrr 2 1Þ

Z 2p

0

›T

›r
du ð30Þ

for the outer cylinder.
The computed values of average equivalent conductivities for the case of

rr ¼ Di=Do ¼ 2:6 and L=Di ¼ 0:8 are compared with the results of Kuehn and
Goldstein (1978) and Shu and Wu (2002), where L ¼ ðDo 2 DiÞ=2 is the
difference of the two radii. Table I shows the comparison of average equivalent
conductivities for the concentric configuration for four different values of the
Rayleigh number, 102, 103, 104 and 5 £ 104. The mesh sizes used in the this
paper are 151 £ 31 and time step Dt ¼ 5 £ 1026. Numerical results agree very
well with the previous results.

To further test the proposed method, numerical calculations were performed
for various configurations of 1/L. The boundary-fitted coordinate systems for
1V=L ¼ 20:623 and 1V=L ¼ 0:652 with rr ¼ 2:6; and 1h=L ¼ 0:25; 0.5 and
0.75 with rr ¼ 2:36 are shown in Figure 2(b)-(g). The coordinate lines that
intersect the walls are arranged perpendicular to the walls (Li et al., 1998),
Therefore,
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Figure 2.
Boundary-fitted
coordinate system for
annular cylinders

(Continued)
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Figure 2.
(Continued)
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Figure 2.
(Continued)
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›T

›r
¼

›T

›h

�
›r

›h

on the walls and it is convenient to calculate the local equivalent conductivities.
For cases with only vertical eccentricity, numerical and experimental results of
the local equivalent conductivities are shown in Figure 3. For 1V=L ¼ 20:623;
the flow is steady and numerical results agree well with the experimental data.
However, for 1V=L ¼ 0:652, periodic flow state occurs in the region near d ¼ 0
and the period is about 3. Initially, the flow is symmetric and two symmetric
cells occur at t ¼ 0:5 near d ¼ 0 (Figure 4(a)) and the local equivalent
conductivity on the outer cylinder is small (Figure 4(b)). Gradually, the

Figure 2.

k̄eqi (Inner cylinder) k̄eqo (Outer cylinder)

Ra
Present
study Shu and Wu

Kuehn and
Goldstein

Present
study Shu and Wu

Kuehn and
Goldstein

102 1.005 1.001 1.000 1.000 1.001 1.002
103 1.089 1.082 1.081 1.084 1.082 1.084
104 2.000 1.976 2.010 1.994 1.976 2.005
5£ 104 2.995 2.953 3.024 2.997 2.952 2.973

Table I.
Comparison of average

equivalent heat
conductivity for

1v¼ 1h¼ 0

Numerical
simulation of

unsteady flow

1043



symmetric state is broken and two secondary cells mix and merge to become
one cell at t ¼ 1:95 (Figure 4(b)). At this stage, the heat transfer rate at the top
of the cylinder increases. The secondary cell rotates clockwise and mixes with
the right vortex (Figure 4(c)). Again the flow is symmetric and two symmetric
cells exist. At about t ¼ 3:45 one secondary cell occurs again, but this time it is
anti-clockwise. At t ¼ 4:95, the flow pattern is nearly the same as that at
t ¼ 1:95. Basically, the numerical results are consistent with the experimental
data. The periodic phenomenon cannot be reflected in the experimental data of
Kuehn and Goldstein (1978). However, a similar phenomenon is observed in the
experiment of Labonia and Guj (1998). The authors opine that the experiment
data of Kuehn and Goldstein (1978) represent only the maximum local
equivalent conductivity at each point on the outer cylinder. The oscillation

Figure 3.
Comparison of eccentric
local heat transfer
coefficients
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Figure 4.
Stream lines for

1V/L¼0.652
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phenomenon can be obtained not only for the vertical eccentric case, but also
for cases with both vertical and horizontal eccentricities when 408 # a # 1308
(Figure 5(a) and (b)). When a # 398 or a $ 1318, the flow is steady. Figure 5(c)
shows one of the steady cases with a ¼ 308. Projahn et al. (1981) also used the

Figure 5.
Stream lines for cases
with both vertical and
horizontal eccentricities
for 1 ¼ 0.652 and
rr ¼ 2.6 at
RT¼ 4.8 £ 104
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same experimental data to verify their numerical analysis. The numerical
results in this paper are more reasonable than those of Projahn et al. (1981).

For cases with only horizontal eccentricity when rr ¼ 2:36, the present
numerical results are shown in Table II and Figure 6. They agree well with the
numerical results of Guj and Stella (1995) and Lee et al. (2002).

Symmetry breaking and overturning states in thermohaline-driven flows
Figure 7 shows the boundary-fitted coordinate system. The computational
mesh consists of 81 £ 51 grid points. The function Ts(x) is given by

TsðxÞ ¼
1

2
cos 2p x 2

1

2

� �� �
þ 1

� �
ð31Þ

and flux Qs(x) through the top boundary is the same as that in Dijkstra and
Molemaker (1997). It is chosen such that the integral over the surface is zero,
that is

›S

›y
¼ dQsðxÞ ¼ d 3cos bp x 2

1

2

� �� �
2

6

bp
sin b

p

2


 �� �
ð32Þ

The parameter d is a measure of the strength of the surface salt-flux and Qs(x)
defines the spatial variation, which can also be changed by varying the value
of b.

In our computation, the parameters b ¼ 2:6, RT ¼ 5 £ 106 and time step
Dt ¼ 5 £ 1027. The parameters Pr ¼ 2:25, Le ¼ 1 are fixed as in Dijkstra and
Molemaker (1997) and Quon and Ghil (1992). The values of Pr and Le are
chosen for comparison with their results. To obtain the symmetric breaking
flow pattern, perturbations of salinity are introduced on the first horizontal grid
line next to the top boundary in the left side of the cavity at the beginning of the
computation. The perturbations are as follows:

S0 ¼ 5 £ 1024 sin 2p
t

100Dt
2 x

� �� �����
���� 0:0015 # t , 0:002 ð33Þ

and

cmax coj j

1h

L
RT Present Guj et al. Lee et al. Present Guj et al. Lee et al.

0.0 5.3£ 103 9.42 9.23 9.075 0.0 0.0 0.00
4.59£ 104 24.56 26.03 24.66 0.0 0.0 0.00

0.25 5.3£ 103 12.06 12.47 11.66 0.251 0.225 0.284
4.59£ 104 24.74 27.97 24.67 1.750 1.694 1.872

0.5 5.3£ 103 13.17 14.27 12.96 0.546 0.576 0.645
4.59£ 104 24.97 28.91 24.59 2.622 2.790 3.047

0.75 5.3£ 103 13.92 15.37 13.67 0.617 0.624 0.744
4.59£ 104 25.11 28.04 24.73 2.867 3.186 3.410

Table II.
Comparison of values of
the stream function for

horizontal eccentric
cases
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Figure 6.
Stream lines for different
values of 1h/L at
RT¼ 4.59 £ 104
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S0 ¼ 25 £ 1024 sin 2p
t

100Dt
2 x

� �� �����
���� 0:0035 # t , 0:004 ð34Þ

When the salt-flux condition is applied while the symmetric state is perturbed,
the perturbed particles will gain speed. This continuous increase in speed will
cause instability. When d is small, the symmetry state cannot be broken
(Figure 8). As d increases, the asymmetry state and overturning state can be
obtained as shown in Figures 9 and 10. The same phenomena can be observed
in Figure 5 of Dijkstra and Molemaker (1997), and Figure 9 of Quon and Ghil

Figure 8.
Symmetry state at

t ¼ 0.3 with d ¼ 0.25

Figure 7.
Transformed grid with
improved resolution at

boundary layer regions
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(1992). The numerical results agree well with their results. This test case is only
used to verify the proposed numerical method. The effect of the magnitude of
the Rayleigh numbers and the strength of the salinity flux on the physical
mechanism of pitchfork bifurcation from symmetric to asymmetric states has
been studied systematically by Quon and Ghil (1992). The physics of the
transitions and the detailed bifurcation structure of the thermohaline-driven
flows have been obtained by Dijkstra and Molemaker (1997) using the
path-following techniques. The details are not repeated here.

Periodic oscillatory phenomenon under neutral buoyancy
The same convection problem was studied again, but with the buoyancy ratio
Rr ¼ 1 and Prandtl number, Pr ¼ 1. The salinity profile at the top boundary is
now specified, using the same profile as the temperature defined by equation
(31). The time variations of the kinetic energy of the system defined is shown in
Figure 11.

Em ¼
1

A

Z
A

Z
1

2
ðu2 þ n2Þ dx dy ð35Þ

Figure 9.
Asymmetry state at
t ¼ 0.3 with d ¼ 3

HFF
13,8

1050



where A is the area of the computational domain and u and v are the two
velocity components. The no-slip boundary conditions are used in the vertical
sidewalls and bottom boundary.

It can be seen from Figure 11 that the flow field is oscillatory when Le , 1.
The period of the oscillations decreases with increasing values of Le. The
period is 0.099, 0.051, 0.043 and 0.036 when Le ¼ 0:9, 0.8, 0.7 and 0.6,
respectively. Also the motion becomes progressively more vigorous, with a
corresponding increase in randomness as the period shortens. The
unsteadiness can be clearly seen in Figure 11 when Le # 0:8. When Le is
large, the flow again becomes unsteady. When Le ¼ 4, the flow is already
highly unsteady. Randomness occurs with further increase in Le as exemplified
by the case Le ¼ 10. The occurrence of oscillations is the cause of flow
instability. Because of density differences, warm and less saline water tends to
rise to the surface in the case of ocean flow; while cold and more saline water
tends to sink to the bottom. However, the surface seawater in the two polar
regions are cold and less saline in the case of ocean flow; while that at the
equator is warm and more saline relative to the bottom seawater. The opposing
effects of temperature and salinity lead to the oscillatory circulations in the

Figure 10.
Overturning state at

t ¼ 0.3 with d ¼ 6
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oceans. Periodic oscillation is the intermediate state between the steady and
random motions.

The time variation of the flow structure in one cycle of oscillation at Le ¼
0:8 is shown in Figure 12. The period in this case is 0.051. The flow and
temperature fields at t ¼ 0:17, 0.18, 0.19, 0.20, 0.21 and 0.22 were compared.

Figure 11.
Curves of average energy
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The basic structure is that the main eddy moves towards the centre of the
cavity and secondary eddies are formed at the four corners. Because of the
temperature and salinity boundary conditions imposed on the top surface,
the two secondary eddies at the two top corners develop first and prevent the
main eddy from contacting the two secondary eddies at the two bottom corners.
With the development and strengthening of the two eddies at the top corners,
the main eddy in the centre weakens and eventually disappears. The two
secondary eddies at the bottom develop at the same time and merge to replace
the disappearing main eddy. The temperature field is also oscillatory. The
behaviour of the salinity field is similar to that of the temperature field and
hence is not shown.

Figure 12.
Oscillation phenomena at

Le ¼ 0.8
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When Le , 1, multiple unstable eddies appear in the flow field.
For example, when Le ¼ 0:8, ten eddies appear at t ¼ 0:19 as shown in
Figure 12. When Le ¼ 0:6, 14 eddies appear at t ¼ 0:196 as shown in Figure 13.
The steady motion when Le ¼ 2 is shown in Figure 14. It can be seen that the
main eddy on the left rotates in the anti-clockwise direction; while its
counterpart on the right rotates in the opposite direction. As described earlier,
randomness sets in with further increase in Le. For example, when Le ¼ 4, the
two main eddies are relatively stable. The secondary eddies rotate in the
opposite direction and move towards the centre from the vertical sidewalls
and the bottom (Figure 15). When Le ¼ 10, the two main eddies are smaller
while the secondary eddies become larger. The flow field is hence more
unstable and less organized as shown in Figure 16.

Figure 15.
Stream function at
t ¼ 0.15 with Le ¼ 4

Figure 14.
Stream function at
Le ¼ 2.0

Figure 13.
Stream function at
t ¼ 0.196 with Le ¼ 0.6

Figure 16.
Stream function at
t ¼ 0.15 with Le ¼ 10
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Conclusions
An accurate high-order difference method is proposed in this paper to solve
double-diffusive problems using boundary fitted coordinate system so that
improved resolution in the boundary layers can be achieved without excessive
computational efforts. The system was first verified by simulating the natural
convection between the eccentric cylinders to demonstrate the versatility of the
boundary fitted coordinate system. The multiple equilibria in thermohaline
flow in a rectangular cavity is then computed. Because the convection terms are
approximated using fourth-order upwind differences, the numerical scheme
has good stability characteristics. The numerical example shows that the
complicated oscillatory motions of double-diffusive systems can be
successfully modelled by the proposed method. When Le . 1, multiple
eddies appear during the cycle of oscillation. When the average kinetic energy
of the system is large, instability occurs. When Le is less than unity, the steady
motion becomes progressively more unsteady as the value of Le decreases. The
flow eventually becomes chaotic when Le is sufficiently small. The method
proposed in this paper can be used to simulate various double-diffusive
problems.
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